Abstract

In this study, the first of its kind, a solid-phase fluorescence sensing platform was developed to quantify contaminants in water. ZnO quantum dots (QDs) were combined with molecularly imprinted polymers (MIPs) to form fluorescence sensing materials. Solid sensing layers were formed via a straightforward spin-coating method, which demonstrated a strong attachment to the sensor substrate while maintaining the integrity of the sensing materials. The developed sensing platform comprised a portable fluorescence detector to measure fluorescence intensity, instead of traditional fluorescence spectroscopy. The solid sensing platform was first tested with 2,4-dichlorophenoxyacetic acid (2,4-D), demonstrating high sensitivity (0.0233) and a very strong correlation (0.98) between the target molecule concentration and sensor signal. Further, the sensing platform was successfully adapted to measure a substance with a different molecular mass and chemical structure, the algae toxin microcystin-LR (MCLR); this demonstrated the sensor's versatility in quantifying target molecules. Tap water samples spiked with MCLR were also used to test the sensor's practical application. Finally, the working mechanism of the sensing platform was established, and the key information for using the sensor to measure various contaminants was determined. With its high performance, broad applicability, and ease of use, the developed platform provides a suitable basis for lab-on-chip image-based sensing devices for environmental monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.