Abstract

The balance between stress and adhesion governs many behaviors of adherent cells such as cell migration. In certain microenvironments such as that of a tumor, variations in hydrostatic pressure be substantial compared to cell-generated stresses. These variations can affect stress-activated ion channels whose activation can in turn affect cell volume and adhesion. To study these effects, we developed a theoretical model to relate changes in hydrostatic pressure to the morphology and volume of adherent cells. The model predicted the bistability of cell morphology (i.e., a snap-through instability) under hydrostatic pressure for certain ranges of adhesion energy density. This snap-through instability can enable cells to spontaneously detach from their environment, and may have bearing on migration and metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.