Abstract

In order to avoid wheel slippage or mechanical damage during the mobile robot navigation, it is necessary tosmoothly change driving velocity or direction of the mobile robot. This means that dynamic constraints of the mobile robotshould be considered in the design of path tracking algorithm. In the study, a path tracking problem is formulated asfollowing a virtual target vehicle which is assumed to move exactly along the path with specified velocity. The drivingvelocity control law is designed basing on bang-bang control considering the acceleration bounds of driving wheels. Thesteering control law is designed by combining the bang-bang control with an intermediate path called the landing curve whichguides the robot to smoothly land on the virtual target’s tangential line. The curvature and convergence analyses providesufficient stability conditions for the proposed path tracking controller. A series of path tracking simulations and experimentsconducted for a two-wheel driven mobile robot show the validity of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.