Abstract

Selective, sensitive, and accurate detection of acrylamide (AA) in thermally processed food is a great challenge for food safety. This paper describes a “turn-on” fluorescence strategy to detect AA in real samples. Herein, the fluorescence intensity of glutathione-modified carbon quantum dots (GSHCQDs) was quenched initially upon the addition of gold nanoparticles (Au NPs) via fluorescence resonance electron transfer (FRET) to form a quenched GSHCQD-Au nanoprobe. When AA was introduced to the quenched GSHCQD-Au nanoprobe, the strong thiol-ene Michael addition (M−A) reaction among the -SH group of GSHCQD and AA occurred which releases GSHCQD to the medium and FL intensity at 520 nm is regained. The GSHCQD-Au nanoprobe can detect the AA in a normal aqueous solution (pH 7) selectively over a short response time of 5 min. Under the optimized conditions, the detection limit of AA was obtained to be 0.12 pM, over a wide linear range of 0–200 nM. Especially, this FRET-based sensing method was utilized successfully for the sensitive detection of AA using an RGB app installed on a smartphone, opening a new approach for the smart sensing of food contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.