Abstract

BackgroundIn the absence of other evidence, modelling has been used extensively to help policy makers plan for a potential future influenza pandemic.MethodWe have constructed an individual based model of a small community in the developed world with detail down to exact household structure obtained from census collection datasets and precise simulation of household demographics, movement within the community and individual contact patterns. We modelled the spread of pandemic influenza in this community and the effect on daily and final attack rates of four social distancing measures: school closure, increased case isolation, workplace non-attendance and community contact reduction. We compared the modelled results of final attack rates in the absence of any interventions and the effect of school closure as a single intervention with other published individual based models of pandemic influenza in the developed world.ResultsWe showed that published individual based models estimate similar final attack rates over a range of values for R0 in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and continuously can be very effective in interrupting transmission of the pandemic virus for R0 values up to 2.5; and that different conclusions reached on the simulated benefit of school closure in published models appear to result from differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts resulting from school closure.ConclusionModels of the spread and control of pandemic influenza have the potential to assist policy makers with decisions about which control strategies to adopt. However, attention needs to be given by policy makers to the assumptions underpinning both the models and the control strategies examined.

Highlights

  • With continuing concern about the possibility of another influenza pandemic, many models have been developed to predict the course of the pandemic and the effect of potential intervention strategies

  • We showed that published individual based models estimate similar final attack rates over a range of values for R0 in a pandemic where no interventions have been implemented; that multiple social distancing measures applied early and continuously can be very effective in interrupting transmission of the pandemic virus for R0 values up to 2.5; and that different conclusions reached on the simulated benefit of school closure in published models appear to result from differences in assumptions about the timing and duration of school closure and flow-on effects on other social contacts resulting from school closure

  • Attention needs to be given by policy makers to the assumptions underpinning both the models and the control strategies examined

Read more

Summary

Introduction

With continuing concern about the possibility of another influenza pandemic, many models have been developed to predict the course of the pandemic and the effect of potential intervention strategies. A relatively isolated community of approximately 30,000 people in the south of Western Australia, is a regional centre with one major hospital, one technical college, 22 schools and approximately 1200 employers. We believe that this modelled population provides us with a large enough experimental test-bed to capture the daily mobility of individuals as found in a developed nation. Using this model we examined the impact that social distancing measures might have in mitigating an influenza pandemic, given that social distancing measures can be implemented early in a pandemic by developed and developing countries alike. In the absence of other evidence, modelling has been used extensively to help policy makers plan for a potential future influenza pandemic

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.