Abstract

In this paper we propose a new kernel-based version of the recursive least-squares (RLS) algorithm for fast adaptive nonlinear filtering. Unlike other previous approaches, we combine a sliding-window approach (to fix the dimensions of the kernel matrix) with conventional L2-norm regularization (to improve generalization). The proposed kernel RLS algorithm is applied to a nonlinear channel identification problem (specifically, a linear filter followed by a memoryless nonlinearity), which typically appears in satellite communications or digital magnetic recording systems. We show that the proposed algorithm is able to operate in a time-varying environment and tracks abrupt changes in either the linear filter or the nonlinearity

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.