Abstract
This paper proposes a sliding-mode direct power control (SMDPC) strategy for doubly fed induction generator (DFIG) under both balanced and unbalanced grid conditions using extended active power. When the traditional power theory is used under unbalanced grid condition, the control strategies usually need to be modified and become more complicated. Therefore, an extended active power is proposed in this paper, which is effective under both balanced and unbalanced grid conditions with a simple control strategy. Based on the extended active power, elaborated analysis of the mathematical model of DFIG is obtained. Furthermore, an SMDPC strategy using the extended active power is proposed, which can obtain sinusoidal stator currents and restrain electromagnetic torque ripples under unbalanced grid condition without the need of decomposition process and phase-locked loop (PLL). Comparative experimental studies of the SMDPC using the extended and traditional active powers for DFIG are conducted to validate the effectiveness of the proposed strategy under both balanced and unbalanced grid conditions. In addition, the dynamic performance and robustness of the proposed SMDPC are also proved to be satisfying by the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.