Abstract

The paper describes a computer model for predicting the steering performance and power flows of a notional skid steered tracked vehicle. The force/slip characteristics of the rubber track pads are calculated by means of the so-called Magic Formula. Relevant parameters for the Magic Formula are derived from the limited amount of data available from traction tests with a tracked vehicle on a hard surface. The computer model considers the vehicle in steady state motion on curves of various radii and allows for lateral and longitudinal weight transfer, roll and pitch motions and the effects of track tension forces. Vehicle dimensions, Magic Formula parameters and the equations of motion are set up in a Microsoft Excel spreadsheet and solutions obtained using the Solver routine. Model outputs are described in terms of driver control input and various power flows against lateral acceleration. Maximum lateral acceleration is generally limited by the available engine power. In some conditions the outer track sprocket could be transmitting almost twice the maximum net engine power. For vehicles with a single electric motor/inverter driving each sprocket, these units would need to be able to transmit these high intermittent powers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.