Abstract

BackgroundThe incidence and mortality of lung cancer rank first among various malignant tumors. The lack of clear molecular classification and effective individualized treatment greatly limits the treatment benefits of patients. Long non-coding RNAs (lncRNAs) have been demonstrated widely involve in tumor progressing, and been proved easy to detect for occupying majority in transcriptome. However, less work focuses on studying the potency of lncRNAs as molecular typing and prognostic indicator in lung cancer.MethodsBased on the 448 lung adenocarcinoma (LUAD) samples and the expression of 14,127 lncRNAs from the Cancer Genome Atlas (TCGA) database, we constructed a co-expression network using weighted gene co-expression network analysis. Then based on the feature module and the overall survival of patients, we constructed a risk score model through Cox proportional hazards regression and verified it with a validation cohort. Finally, according to the median of risk score, the function of this model was enriched.ResultsWe identified a module containing 123 lncRNAs that is related with the prognosis of LUAD. Using univariate and multivariate Cox proportional hazards regression with lasso regression, six lncRNAs were identified to construct a risk score model. The calculation formula shown as follows: risk score = (−0.3057 × EXPVIM-AS1) + (0.9678 × EXPAC092811.1) + (1.0829 × EXPNFIA-AS1) + (−0.3505 × EXPAL035701.1) + (3.9378 × EXPAC079336.4) + (−0.2810 × EXPAL121790.2). Six-lncRNA model can be used as an independent prognostic indicator in LUAD (P<0.001) and the area under the 5-year receiver operating characteristic (ROC) curve is 0.715.ConclusionsWe developed a six-lncRNA model, which could be used for predicting prognosis and guiding medical treatment in LUAD patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.