Abstract

Cellular redox changes are common in apoptosis, immune function, signaling pathways and cancer. The authors aimed to develop a single-wavelength method using the superior fluorescence sensitivity of a flow cytometer for measuring redox-sensitive green fluorescent protein signal during oxidative stress in cell lines. The single-wavelength method was able to discern small differences in oxidative stress between cell lines and between the cytoplasmic and mitochondrial compartments within the same cell line. In Chinese hamster ovary cells, the mitochondrial matrix compartment was more sensitive to oxidative stress compared with MDA-MB-231 cells, and the rapid changes in redox state were followed by a slow recovery phase. The authors conclude that this simplified method is useful and preferred for studies where alterations in overall redox-sensitive green fluorescent protein expression are controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.