Abstract

Distinguishing ingested particles from those attached to the cell surface is an essential requirement when performing quantitative studies of phagocytosis. In the present report, we describe a simple, sensitive and reliable flow cytofluorometric method that achieves this goal in a Candida albicans-human neutrophils (PMN) system. The assay is based on the observation that the vital dye trypan blue (TB), while quenching the green fluorescence of fluorescein-labeled C. albicans, causes them to fluoresce red. PMN were incubated with fluorescein-labeled yeast particles for the required time. Aliquots of the incubation mixtures were then promptly diluted with an equal volume of a TB solution at pH 4.0, and subsequently analyzed by flow cytometry for green and red fluorescence. Since TB does not penetrate into the cells, ingested yeasts retain their green fluorescence, while membrane-bound particles display a red fluorescence. Our fluorescence flow cytometric method enables to simultaneously distinguish, within the leukocyte population, cell subsets with attached and ingested yeast particles. Its major features are: (1) accuracy, sensitivity and reproducibility; (2) no further sample manipulations after completion of phagocytosis; (3) possibility of counting free, attached and internalized yeast particles; and (4) use of a nontoxic reagent (TB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.