Abstract

BackgroundSerological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed.Methodology/FindingsWe have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134.ConclusionsWe have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 viruses.

Highlights

  • H5N1 influenza virus is highly pathogenic in poultry, certain bird populations, and has occasionally infected human causing severe clinical outcomes [1,2,3]

  • The reduced binding to sialic acid receptors as a result of the A134V mutation exerts a critical influence in pseudotyping efficiency of H5-HA, but has an impact at the whole virus level

  • Similar to HA of other subtypes of influenza viruses, H5-HA is highly mutable as a result of antibody-selection pressure, leading to the rise of divergent H5N1 viruses that are categorized into various strains and clades [13,14,22]

Read more

Summary

Introduction

H5N1 influenza virus is highly pathogenic in poultry, certain bird populations, and has occasionally infected human causing severe clinical outcomes [1,2,3]. Like all other subtypes of influenza viruses, H5N1 virus first binds to cell surface glycan receptors via its surface glycoprotein hemagglutinin (HA) and is subsequently internalized via endocytic pathways [5,6,7]. A furin-dependent polybasic cleavage site has been shown to be characteristic of highly pathogenic avian influenza viruses [9,10], not all H5-HAs contain the polybasic cleavage site. Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.