Abstract
ABSTRACT In many heterogeneous pyrolysis reactions the porous solid undergoes geometrical changes due to the consumption of solid reactant which decrease the compressive strength of the solid matrix. In this study a volume expansion model is proposed for pyrolysis of a single shale particle. This model not only takes into account the structural changes and the intraparticle gradients, but also the functional dependencies of various parameters on the variation of solid reactant conversion and internal temperature distribution. Effects of various parameters which are expected to be encountered in an in-situ retorting process were investigated. Primary emphasis was placed on determining the manner in which transport processes affect the yield of pyrolysis product. The results indicate that Intraparticle heat transfer is a dominant factor in the pyrolysis of oil shale and that volume expansion favors the decomposition rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.