Abstract

Changes in the oligomeric status of MutS protein was probed in solution by dynamic light scattering (DLS), and corroborated by sedimentation analyses. In the absence of any nucleotide cofactor, free MutS protein [hydrodynamic radius (Rh) of 10-12 nm] shows a small increment in size (Rh 14 nm) following the addition of homoduplex DNA (121 bp), whereas the same increases to about 18-20 nm with heteroduplex DNA containing a mismatch. MutS forms large aggregates (Rh > 500 nm) with ATP, but not in the presence of a poorly hydrolysable analogue of ATP (ATPgammaS). Addition of either homo- or heteroduplex DNA attenuates the same, due to protein recruitment to DNA. However, the same protein/DNA complexes, at high concentration of ATP (10 mm), manifest an interesting property where the presence of a single mismatch provokes a much larger oligomerization of MutS on DNA (Rh > 500 nm in the presence of MutL) as compared to the normal homoduplex (Rh approximately 100-200 nm) and such mismatch induced MutS aggregation is entirely sustained by the ongoing hydrolysis of ATP in the reaction. We speculate that the surprising property of a single mismatch, in nucleating a massive aggregation of MutS encompassing the bound DNA might play an important role in mismatch repair system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.