Abstract

This paper considers a single-machine scheduling problem where the decision authorities and information are distributed in multiple subproduction systems. Subproduction systems share the single machine and must cooperate with one another to achieve a global goal of minimizing a linear function of the completion times of the jobs; e.g., total weighted completion times. It is assumed that neither the subproduction systems nor the shared machine have complete information about the entire system. The associated scheduling problems are formulated as zero-one integer programs. The solution approach is based on Lagrangian relaxation techniques modified to require less global information. Specifically, there is no need for a global upper bound, or a single master problem that has a complete view of all the coupling constraints. The proposed methodology exhibits a promising performance when experimentally compared to the Lagrangian relaxation with a subgradient method with the added benefit that can be applied to situations with more restrictive information sharing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.