Abstract
Decoupling techniques can be applied to a vector processor, resulting in a large increase in performance of vectorizable programs. We simulate a selection of the Perfect Club and Specfp92 benchmark suites and compare their execution time on a conventional single port vector architecture with that of a decoupled vector architecture. Decoupling increases the performance by a factor greater than 1.4 for realistic memory latencies, and for an ideal memory system with zero latency, there is still a speedup of as much as 1.3. A significant portion of this paper is devoted to studying the tradeoffs involved in choosing a suitable size for the queues of the decoupled architecture. The hardware cost of the queues need not be large to achieve most of the performance advantages of decoupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.