Abstract
A recurrent neural network is proposed to deal with the nonlinear variational inequalities with linear equality and nonlinear inequality constraints. By exploiting the equality constraints, the original variational inequality problem can be transformed into a simplified one with only inequality constraints. Therefore, by solving this simplified problem, the neural network architecture complexity is reduced dramatically. In addition, the proposed neural network can also be applied to the constrained optimization problems, and it is proved that the convex condition on the objective function of the optimization problem can be relaxed. Finally, the satisfactory performance of the proposed approach is demonstrated by simulation examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.