Abstract
Abstract This work presents the synthesis of perovskite GdCoO3 by a microwave-assisted solution method in order to test its possible application as a gas sensor. The crystal evolution, structure, composition, texture, morphology, and particle size were analyzed by X-ray diffraction, scanning and transmission electron microscopies, and nitrogen physisorption. Our synthesis route allowed to obtain GdCoO3 at lower temperatures and shorter reaction times than conventional methods. Measurements confirmed the formation of porous GdCoO3 microbases with a thickness of 7–13 μm. The GdCoO3 microbases were constituted by nanoparticles of size 10–20 nm. Additionally, crystallites of size 85–130 nm were observed distributed on the surface of the microbases, covering a surface area of around 19 m2/g. Pellets elaborated from GdCoO3 powders were tested as sensors in carbon monoxide and propane gaseous atmospheres at different temperatures and gas concentrations. The GdCoO3 showed a good performance as a gas sensor compared to other similar oxides. The oxide was clearly sensitive to the studied gases even at concentrations as low as 5 ppm at a temperature of 100 °C. The response of the material was homogeneous and increased with both the increase in temperature and gas concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.