Abstract

Accurately predicting wind turbine wake effects is essential for optimizing wind-farm performance and minimizing maintenance costs. This study explores the applicability of the Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) framework to develop a simple yet robust Reynolds-averaged Navier-Stokes (RANS) model for wake prediction in wind energy contexts. The framework introduces two correction terms into two-equation models, with k − ε model being utilized in the current study. One correction term resembles the residual of the Turbulent Kinetic Energy (TKE) equation, and the other corrects the deviatoric part of the Reynolds Stress Tensor (RST). The terms are calculated from high-fidelity measurement or simulation data, and symbolic regression is used to determine the model for these terms.In this study, Large Eddy Simulation (LES) data from a single turbine is used as the training dataset, and a sample pre-selection process is employed to discover a correction model efficiently. The derived model incorporates two terms based on Pope’s basis tensors and their invariants. The expression of the obtained model shows that it functions as a modification to the constant Cµ in the k − ε model. The model is evaluated by comparing its predicted velocity and TKE fields with the LES data used for the training. The model showed satisfactory performance in predicting both fields. Additionally, its generalizability is evaluated by testing it against a more complex six-turbine unseen case. The results indicate that the model effectively captures the velocity field and power output, but it tends to overpredict TKE, especially in the wake region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.