Abstract
Accurate measurements of oligomerization in membranes by Förster resonance energy transfer (FRET) are always compromised by a substantial contribution from random chance colocalization of donors and acceptors. Recently, Li and coworkers demonstrated the use of computer simulation in estimating the contribution of this “proximity” component to correct the FRET efficiency and estimate the free energy of dimer formation of the G380R mutants of fibroblast growth factor receptor 3 (FGFR3) transmembrane domain immersed into lipid bilayer. Because tight dimerization will result in complete energy transfer from donor to acceptor, we have used the same experimental system of fluorescein- and rhodamine-labeled G380R mutants of FGFR3 for the experimental assessment of the proximity FRET corrections using fluorescence lifetime measurements. The experimental proximity FRET correction, based on time-resolved fluorescence measurements, is expected to have general advantages over theoretical correction, especially in the case of nonrandomly distributed monomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.