Abstract

Metal-organic frameworks (MOF) are recently developed coordination porous materials, and their unique structures are very conducive to catalytic reactions. In this paper, p-benzenedicarboxylic acid (PBA)-Ni2+ MOF materials (denoted as PBA-Ni-x, where x represents the initial ratio of PBA to Ni2+ ) were synthesized by a hydrothermal method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and N2 gas adsorption. H2 gas was produced using the synthesized MOF as a photocatalyst and Eosin Y as a photosensitizer. The dependence of the special surface area and thickness of the nanosheets of Ni-MOF on the initial ratio of PBA to Ni2+ (PBA/Ni2+ ) was investigated. The BET surface areas of PBA-Ni-1 PBA-Ni-2 and PBA-Ni-3 are 11.00, 24.61 and 13.04m2 g-1 , respectively. And the thicknesses of nanosheets are approximately 600-1000, 200-500 and 300-700nm. Among the three materials, PBA-Ni-2 has the thinnest sheet-like structure and largest surface area. Thus, it displays the highest H2 evolution rate of 20.0μmolh-1 . The noble-metal-free hydrogen production system is valuable for the application of MOF materials in photocatalytic water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.