Abstract

Resazurin dye has been broadly used as indicator of cell viability in several types of assays for evaluation of the biocompatibility of medical and dental materials. Mitochondrial enzymes, as carriers of diaphorase activities, are probably responsible for the transference of electrons from NADPH + H+ to resazurin, which is reduced to resorufin. The level of reduction can be quantified by spectrophotometers since resazurin exhibits an absorption peak at 600 etam and resorufin at 570 etam wavelengths. However, the requirement of a spectrophotometer and specific filters for the quantification could be a barrier to many laboratories. Digital cameras containing red, green and blue filters, which allow the capture of red (600 to 700 etam) and green (500 to 600 etam) light wavelengths in ranges bordering on resazurin and resorufin absorption bands, could be used as an alternative method for the assessment of resazurin and resorufin concentrations. Thus, our aim was to develop a simple, cheap and precise method based on a digital CCD camera to measure the reduction of resazurin. We compared the capability of the CCD-based method to distinguish different concentrations of L929 and normal Human buccal fibroblast cell lines with that of a conventional microplate reader. The correlation was analyzed through the Pearson coefficient. The results showed a strong association between the measurements of the method developed here and those made with the microplate reader (r(2) = 0.996; p < 0.01) and with the cellular concentrations (r(2) = 0.965; p < 0.01). We concluded that the developed Colorimetric Quantification System based on CCD Images allowed rapid assessment of the cultured cell concentrations with simple equipment at a reduced cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.