Abstract

The as-prepared graphene oxide (GO) exhibited a strong catalytic effect on reduction of HAuCl4 by trisodium citrate to form gold nanoplasmons (AuNPs) with a strong surface-enhanced Raman scattering (SERS) effect at 1615cm-1 in the presence of molecular probe Victoria blue 4R (VB4r). SERS intensity increased with nanocatalyst GO concentration due to the formation of more AuNP substrates. The aptamer (Apt) of Hg2+ can bind to GO to form Apt-GO complexes, which can strongly inhibit nanocatalysis. When target Hg2+ is present, the formed stable Hg2+ -Apt complexes are separated from the GO surface, which leads to GO catalysis recovery. The enhanced SERS signal was linear to Hg2+ concentration in the range 0.25-10nmol/L, with a detection limit of 0.08nmol/L Hg2+ . Thus, a new gold nanoplasmon molecular spectral analysis platform was established for detecting Hg2+ , based on Apt regulation of GO nanocatalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.