Abstract

Taking the hepatic sinusoid (HS) as the main delivery area of liver nutrients and metabolic waste, recognizing its structure is important for a deep understanding of liver function. In this paper, based on lycopersicon esculentum lectin (LEL), with targeting ability for endothelial cells, and carbon quantum dots (CQDs), with high biosafety, an LEL-coupled CQD immunofluorescence probe (CQD@LEL) that can label microvessels is designed and used for the fluorescence labeling and imaging of HS in liver tissue sections. The CQD size is approximately 2 nm. Blue fluorescence is emitted under excitation; its optimal excitation wavelength is 400 nm while the emission is at about 450 nm. Gel electrophoresis and capillary electrophoresis confirm that glutaraldehyde can couple LEL to CQD, and the obtained CQD@LEL retains the fluorescence property and has good stability. Optimization experiments show that its labeling effect is positively correlated with time and probe concentration for dyeing the blood vessels of mouse liver slices. In order to improve the effect further, a probe concentration of 0.17 mg mL-1 and incubation time of 3 h were chosen to label the liver tissue sections. The results show that the liver microvessels are formed by interstitial structures among the hepatic cords, and the HS presents a granular or patchy appearance. H&E and ultrathin section TEM show that the microvascular wall of the liver is composed of discontinuous endothelial cells, and there are Kupffer cells and other cells in the tubes, proving that our probe can clearly label the structure and morphology of liver microvessels. This work is of great significance for the visualization of HS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.