Abstract

This work develops a simple finite element for the geometrically exact analysis of Bernoulli–Euler rods. Transversal shear deformation is not accounted for. Energetically conjugated cross-sectional stresses and strains are defined. A straight reference configuration is assumed for the rod. The cross-section undergoes a rigid body motion. A rotation tensor with the Rodrigues formula is used to describe the rotation, which makes the updating of the rotational variables very simple. A formula for the Rodrigues parameters in function of the displacements derivative and the torsion angle is for the first time settled down. The consistent connection between elements is thoroughly discussed, and an appropriate approach is developed. Cubic Hermitian interpolation for the displacements together with linear Lagrange interpolation for the torsion incremental angle were employed within the usual Finite Element Method, leading to adequate C1 continuity. A set of numerical benchmark examples illustrates the usefulness of the formulation and numerical implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.