Abstract

A bipolar hold-down voltage was used to study mechanical degradation in radio-frequency microelectromechanical capacitive shunt switches. The bipolar signal was used to prevent the occurrence of dielectric charging and to isolate mechanical effects. The characteristics of material stress relaxation and recovery were monitored by recording the change of the pull-in voltage of a device. The creep effect in movable components was saturated by repeated actuation to the pulled-in position, while comparison with a theoretical model confirmed the presence of linear viscoelasticity in the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.