Abstract

Application of respirometric tools in wastewater engineering fields is still not getting familiarity and acceptance by academy or industry in developing countries as compared to the use of conventional biochemical oxygen demand (BOD) approach. To justify the applicability of respirometry, a low-cost respirometric device suitable for monitoring biodegradation process in wastewater has been developed. This device contains six independently operating reactors placed in a temperature control unit for the bioassay of five wastewater samples simultaneously (along with one blank). Each reactor is equipped with a magnetic stirrer for the continuous agitation of the test sample. Six manometers, linked with the individual reactors, measure the pressure and volume changes in the headspace gas phase of the reactor. Working formulae have been derived to convert the ‘volume-change in gas phase’ data to ‘the oxygen depletion in the whole liquid–gas system’ data. The performance of the device has been tested with glucose–glutamic acid standard solution and found satisfactory. Conventional BOD test and the respirometric measurements were performed simultaneously and it is found that in addition to measuring the BOD of the sample, this device gives oxygen uptake profile for further analysis to determine the biokinetic coefficients. Additionally, in some cases, following a specific test protocol, the respirometer can indirectly estimate the carbon dioxide evolved during biodegradation process for calculating respiratory activity parameter such as respiratory quotient. It is concluded that the device can be used in the laboratories associated with the activated sludge plants and also for teaching and research purposes in developing countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.