Abstract

A sulfur/graphene oxide/multiwalled carbon nanotube (S/GO/MWNT) composite was synthesized via a simple ultrasonic mixing method followed by heat treatment. By taking advantage of this solution-based self-assembly synthesis route, poisonous and noxious reagents and complicated fabrication processes are rendered unnecessary, thereby simplifying its manufacturing and decreasing the cost of the final product. Transmission and scanning electronic microscopy observations indicated the formation of the three-dimensional interconnected S/GO/MWNT composite through the environmentally friendly process. The GO layers and long MWNTs synergistically constructed hierarchical electron/ion pathways, favoring the ion transport and electrolyte diffusion. The interlaced network can serve as sponges to physically absorb polysulfides to their wrinkled surface and porous structure. In addition, GO could confine the polysulfides’ dissolution through chemical absorption by the functional groups on GO layers. Therefore, the resulting S/GO/MWNT composite exhibits good rate capability and highly stable specific discharge capacity of 773 mA h g−1 after 100 cycles at 0.1 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.