Abstract
AbstractIn tidal estuaries, quantifying freshwater discharge is still a difficult problem that has not yet been overcome due to the inherent difficulty in measuring and analysing the tidal discharge, especially during periods of low river flow. Because observations are often made in the stations further upstream, where the ratio of river to tidal discharge is large, it remains difficult to determine the discharge rate in the saline region. Freshwater discharge estimation is even more difficult in a branched estuary system having multiple diversion channels that connect with each other at a junction. To date, several methods have been developed for estimating freshwater discharge in estuaries. The most widely used are analytical and conceptual models that employ salinity as the principal trace and numerical simulations. However, these methods are very time consuming and costly as they require large sets of observations before the computations can take place. This paper presents a simple approach to investigating the discharge distribution over branched channels by considering the energy loss due to friction. We develop an analytical model that can obtain the discharge rate quantitatively at a junction where the main flow bifurcates into two branches. The model uses the bed roughness, tidal water level, and cross‐sectional profile under tidally averaged conditions as input data. Two selected estuarine systems in the Hiroshima delta in Japan and the Mekong delta in Vietnam have been investigated. Computations of the newly developed model show good agreement with earlier published results computed by sophisticated analytical and numerical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.