Abstract

In this report, we demonstrated a novel efficient a simple strategy route for the preparation of smart hybrid Fe-core/Au-shell magnetic onto multi-walled carbon nanotubes (CNT) sidewalls via Cu (I)-catalyzed 1, 3-dipolar cycloaddition (“click” coupling). The fabrication of gold-coated iron nanoparticles (Fe@AuNPs) is initially achieved by employing a two-step reverse micelle process. A new azide terminated ligand was first synthesized to change Fe@AuNPs by ligand exchange reaction. The Fe@Au NPs decorated MWNTs (MWNTs-Fe@Au) nanohybrids were synthesized by the reaction of an azide-containing Fe@Au NPs with alkyne-functionalized MWNTs via the Cu (I)-catalyzed 1,3-dipolar cycloaddition reaction. Energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and Transmission electron microscopy (HR-TEM) were used to study the changes in surface functionalities and demonstrate the successful immobilization of Fe@Au on CNT surface. In addition, the superconducting quantum interference device (SQUID) study revealed that the nanohybrids possess superparamagnetic character which is susceptible to rapid separation under an external magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.