Abstract
In statistical estimation theory, it has been shown previously that the Wigner–Yanase skew information is bounded by the quantum Fisher information associated with the phase parameter. Besides, the quantum Cramér–Rao inequality is expressed in terms of skew information. Since these two fundamental quantities are based on the concept of quantum uncertainty, we derive here their analytical formulas for arbitrary two qubit X-states using the same analytical procedures. A comparison of these two informational quantifiers for two quasi-Werner states composed of two bipartite superposed coherent states is examined. Moreover, we investigated the decoherence effects on such quantities generated by the phase damping, depolarization and amplitude damping channels. We showed that decoherence strongly influences the quantum criteria during the evolution and these quantities exhibit similar dynamic behaviors. This current work is characterized by the fact that these two concepts play the same role and capture similar properties in quantum estimation protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.