Abstract
A simple algorithm yielding unique face subdivision patterns of locally refined tetrahedral elements by the Delaunay tessellation process is presented. Due to the numerous advantages of edge elements, the algorithm is combined with the magnetostatic edge element computer code. A comparative analysis of four different error estimates used to locate elements for refinement, including a new one suitable for edge elements, is described. The performance of the proposed algorithm and the effectiveness of the error estimates are demonstrated by means of three-dimensional test problems. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.