Abstract

PurposeThe purpose of this paper is to design a kernel convolution processor. High-speed image processing is a challenging task for real-time applications such as product quality control of manufacturing lines. Smart image sensors use an array of in-pixel processors to facilitate high-speed real-time image processing. These sensors are usually used to perform the initial low-level bulk image filtering and enhancement.Design/methodology/approachIn this paper, using pulse-width modulated signals and regular nearest neighbor interconnections, a convolution image processor is presented. The presented processor is not only capable of processing arbitrary size kernels but also the kernel coefficients can be any arbitrary positive or negative floating number.FindingsThe performance of the proposed architecture is evaluated on a Xilinx Virtex-7 field programmable gate array platform. The peak signal-to-noise ratio metric is used to measure the computation error for different images, filters and illuminations. Finally, the power consumption of the circuit in different operating conditions is presented.Originality/valueThe presented processor array can be used for high-speed kernel convolution image processing tasks including arbitrary size edge detection and sharpening functions, which require negative and fractional kernel values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.