Abstract

On the basis of Tb3+, structure-switching aptamer and magnetic beads (MBs), a signal-on fluorescent aptasensor was developed for the label-free determination of OTA in wheat. Initially, the specific sequence of the anti-OTA aptamer labeled with a biotin group, was attached to streptavidin-modified MBs. Two single-stranded signal probes were added and naturally hybridized with anti-OTA aptamer to form the duplex structure in the solution. Due to the fact that single-stranded oligonucleotides can greatly enhance the emission of Tb3+ in solution but duplexes do not, through magnetic separation, the supernatant liquid of the above solution contained no single-stranded DNA and cannot increase the emission of Tb3+. While upon OTA addition, it will bind with aptamer to form OTA-aptamer G-quadruplex while releasing two single-stranded signal probes. Through magnetic separation, the released single-stranded signal probes left in the supernatant liquid can dramatically increase the fluorescent intensity of Tb3+. By employing the above strategy, this aptasensor can detect as low as 20pg/mL OTA with high specificity. To the best of our knowledge, the proposed aptasensor is the first attempt to use the fluorescent characteristics of Tb3+ for OTA detection, which may represent a promising path toward routine quality control of food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.