Abstract

Based on a set of deep learning and mode decomposition methods, a short-term prediction model for PM2.5 concentration for Beijing city is established in this paper. An ensemble empirical mode decomposition (EEMD) algorithm is first used to decompose the original PM2.5 timeseries to several high- to low-frequency intrinsic mode functions (IMFs). Each IMF component is then trained and predicted by a combination of three neural networks: back propagation network (BP), long short-term memory network (LSTM), and a hybrid network of a convolutional neural network (CNN) + LSTM. The results showed that both BP and LSTM are able to fit the low-frequency IMFs very well, and the total prediction errors of the summation of all IMFs are remarkably reduced from 21 g/m3 in the single BP model to 4.8 g/m3 in the EEMD + BP model. Spatial information from 143 stations surrounding Beijing city is extracted by CNN, which is then used to train the CNN+LSTM. It is found that, under extreme weather conditions of PM2.5 < 35 g/m3 and PM2.5 > 150 g/m3, the prediction errors of the CNN + LSTM model are improved by ~30% compared to the single LSTM model. However, the prediction of the very high-frequency IMF mode (IMF-1) remains a challenge for all neural networks, which might be due to microphysical turbulences and chaotic processes that cannot be resolved by the above-mentioned neural networks based on variable–variable relationship.

Highlights

  • Published: 27 July 2021Particulate matter in the air with aerodynamic diameters

  • Since the intrinsic mode functions (IMFs)-1 is obtained by subtracting IMFs 2 to 9 from the original timeseries, so that the summation of all IMFs is exactly equal to the original one; the summation of the predictions of all IMFs can be treated as the prediction for the original timeseries

  • One can imagine that the back propagation network (BP) neural network can be competent for those low-frequency IMFs but will be challenged by the high-frequency IMFs

Read more

Summary

Introduction

Published: 27 July 2021Particulate matter in the air with aerodynamic diameters

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.