Abstract

Viral vector-mediated gene therapies have the potential to treat many human diseases; however, host immune responses against the vector and/or the transgene pose a safety risk to the patients and can negatively impact product efficacy. Thus, novel strategies to reduce vector immunogenicity are critical for the advancement of these therapies. T cell activation (TCA) is required for the development of immune responses during gene therapy. We hypothesized that modulation of TCA by incorporating a novel viral immunomodulatory factor into a viral vector may reduce unwanted TCA and immune responses during gene therapy. To test this hypothesis, we identified an immunomodulatory domain of the hepatitis C virus (HCV) NS protein 5A (NS5A) protein and studied the effect of viral vectors expressing NS5A peptide on TCA. Lentiviral vector-mediated expression of a short 20-mer peptide derived from the NS5A protein in human T cells was sufficient to inhibit TCA. Synthetic 20-mer NS5A peptide also inhibited TCA in primary human T cells. Mechanistically, the NS5A protein interacted with Lck and inhibited proximal TCR signaling. Importantly, NS5A peptide expression did not cause global T cell signaling dysfunction as distal T cell signaling was not inhibited. Finally, recombinant adeno-associated virus (AAV) vector expressing the 20-mer NS5A peptide reduced both the recall antigen and the TCR-mediated activation of human T cells and did not cause global T cell signaling dysfunction. Together, these data suggest that expression of a 20-mer NS5A peptide by an AAV vector may reduce unwanted TCA and may contribute to lower vector immunogenicity during gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.