Abstract

A series of triphenylamine-derived fluorescent dyes were attached to a Cu2+-containing MOF (metal-organic framework), denoted as Pm@CuMOF. The molecular structures of these dyes were discussed by the single crystal structures. Their major absorption bands peaked at 410-450 nm, showing emission bands ranging from 556 to 586 nm with emission quantum yields ranging from 8.0 to 15.1%. It was found that the [-N(C2H5)2] group generally improved sensing performance, and the -OH group in the dyes helped the Cu2+ quenching effect. Pm@CuMOF was observed by SEM as nanorods with a width of ~100 nm and a length of 300 nm. Their XRD patterns and N2 adsorption/desorption isotherms were recorded to confirm their porous structure. A low probe loading level of ~4% was determined by TGA result. The CO sensing mechanism was revealed as a Cu2+/Cu+-involved sensing mechanism based on the result of NMR titration, IR, XPS, and EPR. The fluorescence of these triphenylamine-derived dyes was firstly quenched by CuMOF. In contact with CO, Cu2+ was reduced to Cu+, accompanied by the release and fluorescence recovery of the fluorescent dyes, showing emission turn-on effect towards CO gas. Pm@CuMOF showed increased emission intensity at CO level of 0.005% (versus N2), with response times ranging from 123 s to 280 s (depending on various temperatures). Good selectivity was observed over competing alkane gases, with stable emission for at least 5 days, but no linear calibration plots were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.