Abstract

The widespread use of power converters in low-voltage distribution grids has given rise to issues regarding the power quality. In fact, non-linear loads such as AC Drives, switching-mode power supplies and grid-connected converters can cause, besides the generation of several current harmonics, also a DC current component injection into the grid. This DC current component can lead to magnetic saturation of the distribution power transformers; in this condition, the transformers present distorted current waveforms, increased power absorption and overheating, that can damage the transformer insulations. This paper presents a way to diagnose the magnetic saturation by a non-direct measurement of the DC current component flowing in the power transformer. In other words, the proposed solution provides an information about the total DC injection produced by the sum of all the electric devices connected to the distribution power transformer. The DC current component causes a DC voltage drop across the parasitic resistance of the transformer's winding: sensing this DC voltage drop allows to evaluate the DC current component. A magnetic sensor was developed in order to obtain a great sensitivity, and the implemented closed loop control allowed to guarantee a good linearity with a high rejection ratio of the grid voltage variations. Simulation and experimental results confirm the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.