Abstract

Trust in reference to integrated circuits addresses the concern that the design and/or fabrication of the integrated circuit (IC) may be purposely altered by an adversary. The insertion of a hardware Trojan involves a deliberate and malicious change to an IC that adds or removes functionality or reduces its reliability. Trojans are designed to disable and/or destroy the IC at some future time or they may serve to leak confidential information covertly to the adversary. Trojans can be cleverly hidden by the adversary to make it extremely difficult for chip validation processes, such as manufacturing test, to accidentally discover them. This paper investigates the sensitivity of a power supply transient signal analysis method for detecting Trojans. In particular, we focus on determining the smallest detectable Trojan, i.e., the least number of gates a Trojan may have and still be detected, using a set of process simulation models that characterize a TSMC 0.18 μm process. We also evaluate the sensitivity of our Trojan detection method in the presence of measurement noise and background switching activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.