Abstract

Airflow in a multi-zone building can be a major cause of pollutant transfer, excessive energy consumption, and occupants discomfort. The key to monitoring airflows and mitigating related problems is to obtain a comprehensive understanding of pressure relationships within the buildings. This study proposes a visualization method for representing pressure distribution within a multi-zone building by using a novel pressure-sensing system. The system consists of a Master device and a couple of Slave devices that are connected with each other by a wireless sensor network. A 4-story office building and a 49-story residential building were installed with the system to detect pressure variations. The spatial and numerical mapping relationships of each zone were further determined through grid-forming and coordinate-establishing processes for the building floor plan. Lastly, 2D and 3D visualized pressure mappings of each floor were generated, illustrating the pressure difference and spatial relationship between adjacent zones. It is expected that the pressure mappings derived from this study will allow building operators to intuitively perceive the pressure variations and the spatial layouts of the zones. These mappings also make it possible for operators to diagnose the differences in pressure conditions between adjacent zones and plan a control scheme for the HVAC system more efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.