Abstract
This paper presents a micromechanical model for a porous viscoplastic material containing two populations of pressurized voids of different sizes. Three scales are distinguished: the microscopic scale (corresponding to the size of the small voids), the mesoscopic scale (corresponding to the size of the large voids) and the macroscopic scale. It is assumed that the first homogenization step is performed at the microscopic scale, and, at the mesoscopic scale, the matrix is taken to be homogeneous and compressible. At the mesoscopic scale, the second homogenization step, on which the present study focuses, is based on a simplified representative volume element: a hollow sphere containing a pressurized void surrounded by a nonlinear viscoplastic compressible matrix. The nonlinear behavior of the matrix, which is expressed using the results obtained in the first homogenization step, is approached using a modified secant linearization procedure involving the discretization of the hollow sphere into concentric layers. Each layer has uniform secant moduli. The predictions of the model are compared with the more accurate numerical results obtained using the finite element method. Good agreement is found to exist with all the macroscopic stress triaxialities and all the porosity and nonlinearity values studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.