Abstract

Capping is a mechanical defect in tablets, which is attributed to multiple factors including intrinsic material properties and tableting conditions. A suitable non-destructive approach using acoustically derived elastic modulus has showed distinctive features between a defective tablet and a defect-free tablet. In this work, a semi-empirical model was developed to estimate flaw size in an internally defective tablet from the relationship among elastic modulus, tablet density, and time of flight (acoustic wave to traverse through the tablet). The model was found fundamentally consistent where the derived flaw size showed clear dependence on powder mechanical properties of seven diverse formulations studied. Furthermore, the flaw size was reasonably correlated with the internal tablet microstructure illustrated by X-ray micro-tomography findings, both qualitatively and quantitatively. This model could thus be efficiently implemented for risk-based evaluation of internal defects in visibly intact tablets to ensure robustness of drug products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.