Abstract

Despite the emerging scientific interest in polymer-based stretchable electronics, the trade-off between the crystallinity and stretchability of intrinsically stretchable polymer semiconductors-charge-carrier mobility increases as crystallinity increases while stretchability decreases-hinders the development of high-performance stretchable electronics. Herein, a highly stretchable polymer semiconductor is reported that shows concurrently improved thin film crystallinity and stretchability upon thermal annealing. The polymer thin films annealed at temperatures higher than their crystallization temperatures exhibit substantially improved thin film stretchability (> 200%) and hole mobility (≥ 0.2cm2 V-1 s-1 ). The simultaneous enhancement of the crystallinity and stretchability is attributed to the thermally-assisted structural phase transition that allows the formation of edge-on crystallites and reinforces interchain noncovalent interactions. These results provide new insights into how the current crystallinity-stretchability limitation can be overcome. Furthermore, the results will facilitate the design of high-mobility stretchable polymer semiconductors for high-performance stretchable electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.