Abstract

Self-powered smart buoys are widely used in sustainable sea, such as marine environmental monitoring. The article designs a self-powered and self-sensing point-absorber wave energy converter based on the two-arm mechanism. The system consists of the wave energy capture module, the power take-off module, the generator module and the energy storage module. As the core component of the wave energy converter, the power take-off module is mainly composed of a two-arm mechanism, which can convert the oscillation heave motion into unidirectional rotary motion. To evaluate the power generation performance of the system, the kinematic and dynamic models of the wave energy converter with the flywheel are established, and the disengagement and engagement phenomena of the flywheel are analyzed. The effectiveness of the prototype in capturing wave energy is verified through dry experiments in lab and field tests. The dry experiment reveals that the maximum output power of the system is 5.67 W, and the maximum and average mechanical efficiency are 66.63 % and 48.35 %, respectively. Additionally, the field test demonstrates that the peak output power can reach 92 W. Meanwhile, the generated electrical signals can be processed by deep learning algorithms to accurately identify different wave states. This high performance confirms that the proposed wave energy converter can meet its own energy needs by capturing wave energy in the marine environment, while also achieving self-sensing for wave condition monitoring. The system has great potential for promoting the development of intelligent sustainable sea in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.