Abstract

A van der Waals heterojunction-based photodetector has attracted significant interest due to its potential for high-speed visible light communication (VLC) application. Herein, we report a self-powered and high-performance MXene/InGaN van der Waals heterojunction visible light mini-photodetector (mini-PD). The combination of MXene and InGaN creates a Schottky junction that effectively separates the photoinduced electron/hole pairs, resulting in a robust heterojunction structure while enhancing carrier mobility and lifetime. The mini-PD exhibits the responsivity of 6.0 A/W, a specific detection rate of 9 × 1011 Jones, and rise/decay times of 7.1/183.2 μs under 470 nm blue light (36.5 μW/cm2) without bias voltage. The results show that MXene forms a robust type-II band arrangement with InGaN, which converts the optical signal into a large electrical signal and improves the stability of the mini-PD. This work provides a strategy for high-speed VLC without external energy input that has great potential for applications such as energy-efficient communication, sensor networks, and low-sensitivity detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.