Abstract

In recent years, in-vehicle applications based on vehicular ad hoc networks (VANETs) have been continuously expanded. Many applications not only focus on delay and effective forwarding rate but also pay more attention to routing path multiplexing and throughput. However, in VANETs, it is challenging to establish real-time and robust multihop forwarding paths due to volatile topological information, disconnected network, churn rate, etc. In order to adapt to the new development trend of VANETs, a self-healing routing strategy (SR) with the ant colony optimization (ACO) is proposed in this article. SR introduces the ACO algorithm to establish routing paths to ensure connectivity and immediacy. The routing-build-ability (RBA) is defined to measure the forwarding capability of a vehicle. The RBA is derived from the delay and packet delivery ratio (PDR) using the fuzzy logic system, which can reduce the computational complexity. To reduce the overhead of path reconstruction performed due to path disconnection, in-road-repairing and intersection-repairing methods are proposed in this article, which prolong the duration of the optimal path and improve throughput. The simulation results and mathematical analyses demonstrate that the feasible SR can reduce the delay by 30%, shorten the time overhead to one sixth, promote the routing duration by three times, and enhance the throughput by three times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.