Abstract

Peptides enable the construction of a diversity of one-dimensional (1D) and zero-dimensional (0D) nanostructures by molecular self-assembly. To date, it is a great challenge to construct two-dimensional (2D) nanostructures from peptides. Here we introduce an organic molecule to tune the amphiphilic-like peptide assembly to form a peptide-organic 2D nanopatch structure. The nanomechanical properties of the nanopatch were explored by quantitative nanomechanical imaging and force control manipulation. The peptide-organic patches are multilayers composed of several domains, which can be peeled off stepwise. The patch formation provides an approach towards constructing 2D nanostructures by peptide-organic assembly and it could be potentially utilized in a wide range of applications such as functional biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.