Abstract

Markov random field (MRF) theory has been widely applied to the challenging problem of image segmentation. In this paper, we propose a new nontexture segmentation model using compound MRFs, in which the original label MRF is coupled with a new boundary MRF to help improve the segmentation performance. The boundary model is relatively general and does not need prior training on boundary patterns. Unlike some existing related work, the proposed method offers a more compact interaction between label and boundary MRFs. Furthermore, our boundary model systematically takes into account all the possible scenarios of a single edge existing in a 3 x 3 neighborhood and, thus, incorporates sophisticated prior information about the relation between label and boundary. It is experimentally shown that the proposed model can segment objects with complex boundaries and at the same time is able to work under noise corruption. The new method has been applied to medical image segmentation. Experiments on synthetic images and real clinical datasets show that the proposed model is able to produce more accurate segmentation results and satisfactorily keep the delicate boundary. It is also less sensitive to noise in both high and low signal-to-noise ratio regions than some of the existing models in common use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.