Abstract

A theory on the second order wave diffraction by a three dimensional body fixed in a regular sea has been developed in the present paper. By regarding the sinusoidal disturb potential as a stationary solution of an initial value problem, and using Laplace transformation method and Tauberian theorem, the boundary value problems of stationary solution of the first and second order diffraction potential have been derived in this paper. Furthermore, the explicit solution of the second order stationary diffraction potential has been obtained with the method of the double Fourier transformation. It is found that the asymptotic behaviour of the second order stationary solution at far field is dependent on two wave systems, the first is “free wave”, travelling independently of the first order wave system, the other is “phase locked waves”, which accompany the first order waves. At the same time, the radiation conditions of the second order diffraction problems are derived. We also find that one can still pursue a steady state formulation with the inclusion of Rayleigh damping. Finally, as an example, the second order wave forces upon a fixed vertical circular cylinder have been calculated, and the numerical results agree well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.