Abstract

This paper proposes a novel method for detection and isolation of wastegate (WG) faults in a turbocharged (TC) gasoline engine. This paper starts with a fault effect analysis on the WG faults, including WG stuck open and stuck closed, which is an early step in a detection strategy design. Then, a second-order sliding-mode observer (SOSMO) is proposed to capture the exhaust manifold dynamics. The observer uses experimentally validated engine models to estimate the WG position and a virtual force. The virtual force represents the external disturbances that disrupt the WG operation and enables the proposed SOSMO to estimate the WG position robust to the faults. Using this force, a detection and isolation algorithm is presented and experimentally verified on a modern TC gasoline engine. Test bench results show that the proposed strategy can successfully detect and isolate the two different WG faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.